

Identifying the most stable accommodation mechanisms for Li in ZrO₂ fuel cladding

Gareth F. Stephens¹, Yan Ren Than³, Aidan Cole-Baker², May Chan², Lee J. Evetts¹, William Neilson⁴, Samuel Murphy⁴, Michael W.D. Ruhston¹, Mark R Wenman³, Robin W. Grimes³, Susan Ortner⁵, Natasha Gotham⁵, William E. Lee^{1,3}, Simon C. Middleburgh¹

- **Aim:** to predict the role of lithium in accelerated corrosion of zirconium alloys. This will enable:
- Design of preventative methods/alterations
- Prolong burnup and increase efficiency of PWRs
- Lower running cost and design simplification.

Previous experimental work by Jacobs has confirmed accelerated lithium corrosion due to higher Li concentrations and at higher temperatures

Method and results: Using density functional theory we found that for both monoclinic and tetragonal ZrO₂:

- High Li concentrations (Blue) increase vacant O (V₀^{••}) (Red) at the oxide's surface (zero partial pressure)
- Defects are predominantly unbound

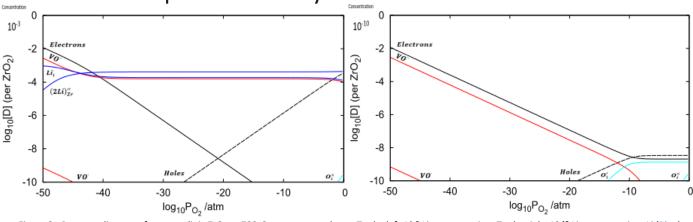
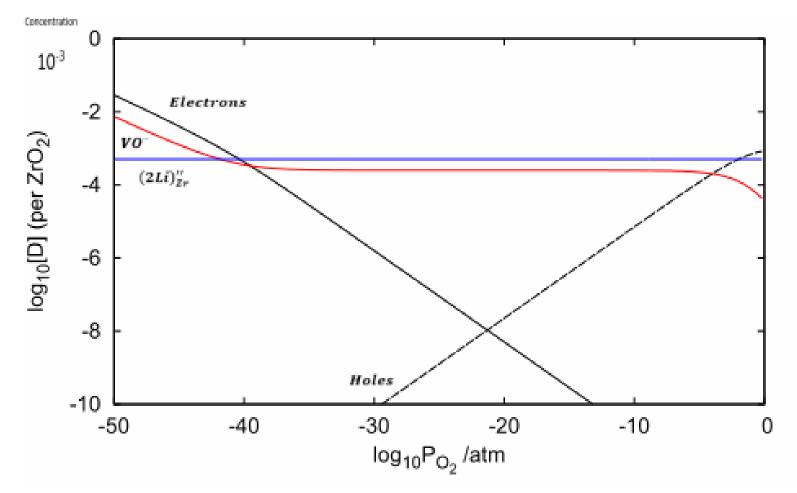



Figure 2 - Brouwer diagrams for monoclinic ZrO₂ at 700°C at constant volume. To the left 10⁻³ Li concentration. To the right 10⁻¹⁰ Li concentration. Li (Blue)

Summary: Diffusion rate of oxygen is largely determined by the concentration of oxygen vacancies (Yang, Yousef & Yildiz, 2018). It is observed that Li increases the O vacancy concentration and this could be a dominant mechanism to explain the experimental observations.

^{1.} Nuclear Futures Institute, Bangor University, Bangor, LL57 1UT, UK, ^{2.} Jacobs, Walton House, 404 Faraday Street, Warrington, WA3 6GA, UK, ^{3.} Department of Materials, Imperial College London, London, SW7 2AB, UK, ^{4.} Engineering Department, Lancaster University, Lancaster LA1 4YW, UK, ^{5.} National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK

Monoclinic 700°C $(2Li)''_{Zr}$ concentrations

• Diffusion rate of oxygen is determined by concentration of oxygen vacancies:

$$D_{oxygen} = \sum_{q} [\mathcal{V}_{\mathcal{O}}^{q}] D_{\mathcal{V}_{\mathcal{O}}^{q}} + \sum_{q} [\mathcal{O}_{\mathbf{i}}^{q}] D_{\mathcal{O}_{\mathbf{i}}^{q}}$$